Sunday, May 10, 2009

Third Generation (1963-1972)

Third Generation (1963-1972) 

The third generation brought huge gains in computational power. Innovations in this era include the use of integrated circuits, or ICs (semiconductor devices with several transistors built into one physical component), semiconductor memories starting to be used instead of magnetic cores, microprogramming as a technique for efficiently designing complex processors, the coming of age of pipelining and other forms of parallel processing (described in detail in Chapter CA), and the introduction of operating systems and time-sharing.

The first ICs were based on small-scale integration (SSI) circuits, which had around 10 devices per circuit (or ``chip''), and evolved to the use of medium-scale integrated (MSI) circuits, which had up to 100 devices per chip. Multilayered printed circuits were developed and core memory was replaced by faster, solid state memories. Computer designers began to take advantage of parallelism by using multiple functional units, overlapping CPU and I/O operations, and pipelining (internal parallelism) in both the instruction stream and the data stream. In 1964, Seymour Cray developed the CDC 6600, which was the first architecture to use functional parallelism. By using 10 separate functional units that could operate simultaneously and 32 independent memory banks, the CDC 6600 was able to attain a computation rate of 1 million floating point operations per second (1 Mflops). Five years later CDC released the 7600, also developed by Seymour Cray. The CDC 7600, with its pipelined functional units, is considered to be the first vector processor and was capable of executing at 10 Mflops. The IBM 360/91, released during the same period, was roughly twice as fast as the CDC 660. It employed instruction look ahead, separate floating point and integer functional units and pipelined instruction stream. The IBM 360-195 was comparable to the CDC 7600, deriving much of its performance from a very fast cache memory. The SOLOMON computer, developed by Westinghouse Corporation, and the ILLIAC IV, jointly developed by Burroughs, the Department of Defense and the University of Illinois, were representative of the first parallel computers. The Texas Instrument Advanced Scientific Computer (TI-ASC) and the STAR-100 of CDC were pipelined vector processors that demonstrated the viability of that design and set the standards for subsequent vector processors.

Early in the this third generation Cambridge and the University of London cooperated in the development of CPL (Combined Programming Language, 1963). CPL was, according to its authors, an attempt to capture only the important features of the complicated and sophisticated ALGOL. However, like ALGOL, CPL was large with many features that were hard to learn. In an attempt at further simplification, Martin Richards of Cambridge developed a subset of CPL called BCPL (Basic Computer Programming Language, 1967). In 1970 Ken Thompson of Bell Labs developed yet another simplification of CPL called simply B, in connection with an early implementation of the UNIX operating system. comment):

Second Generation (1954-1962)

Second Generation (1954-1962) 

The second generation saw several important developments at all levels of computer system design, from the technology used to build the basic circuits to the programming languages used to write scientific applications.

Electronic switches in this era were based on discrete diode and transistor technology with a switching time of approximately 0.3 microseconds. The first machines to be built with this technology include TRADIC at Bell Laboratories in 1954 and TX-0 at MIT's Lincoln Laboratory. Memory technology was based on magnetic cores which could be accessed in random order, as opposed to mercury delay lines, in which data was stored as an acoustic wave that passed sequentially through the medium and could be accessed only when the data moved by the I/O interface.
Important innovations in computer architecture included index registers for controlling loops and floating point units for calculations based on real numbers. Prior to this accessing successive elements in an array was quite tedious and often involved writing self-modifying code (programs which modified themselves as they ran; at the time viewed as a powerful application of the principle that programs and data were fundamentally the same, this practice is now frowned upon as extremely hard to debug and is impossible in most high level languages). Floating point operations were performed by libraries of software routines in early computers, but were done in hardware in second generation machines.
 

During this second generation many high level programming languages were introduced, including FORTRAN (1956), ALGOL (1958), and COBOL (1959). Important commercial machines of this era include the IBM 704 and its successors, the 709 and 7094. The latter introduced I/O processors for better throughput between I/O devices and main memory.
 
The second generation also saw the first two supercomputers designed specifically for numeric processing in scientific applications. The term ``supercomputer'' is generally reserved for a machine that is an order of magnitude more powerful than other machines of its era. Two machines of the 1950s deserve this title. The Livermore Atomic Research Computer (LARC) and the IBM 7030 (aka Stretch) were early examples of machines that overlapped memory operations with processor operations and had primitive forms of parallel processing.

First Generation Electronic Computers (1937-1953)

First Generation Electronic Computers (1937-1953) 

Three machines have been promoted at various times as the first electronic computers. These machines used electronic switches, in the form of vacuum tubes, instead of electromechanical relays. In principle the electronic switches would be more reliable, since they would have no moving parts that would wear out, but the technology was still new at that time and the tubes were comparable to relays in reliability. Electronic components had one major benefit, however: they could ``open'' and ``close'' about 1,000 times faster than mechanical switches.
 
The earliest attempt to build an electronic computer was by J. V. Atanasoff, a professor of physics and mathematics at Iowa State, in 1937. Atanasoff set out to build a machine that would help his graduate students solve systems of partial differential equations. By 1941 he and graduate student Clifford Berry had succeeded in building a machine that could solve 29 simultaneous equations with 29 unknowns. However, the machine was not programmable, and was more of an electronic calculator.
 

A second early electronic machine was Colossus, designed by Alan Turing for the British military in 1943. This machine played an important role in breaking codes used by the German army in World War II. Turing's main contribution to the field of computer science was the idea of the Turing machine, a mathematical formalism widely used in the study of computable functions. The existence of Colossus was kept secret until long after the war ended, and the credit due to Turing and his colleagues for designing one of the first working electronic computers was slow in coming.
 

The first general purpose programmable electronic computer was the Electronic Numerical Integrator and Computer (ENIAC), built by J. Presper Eckert and John V. Mauchly at the University of Pennsylvania. Work began in 1943, funded by the Army Ordnance Department, which needed a way to compute ballistics during World War II. The machine wasn't completed until 1945, but then it was used extensively for calculations during the design of the hydrogen bomb. By the time it was decommissioned in 1955 it had been used for research on the design of wind tunnels, random number generators, and weather prediction. Eckert, Mauchly, and John von Neumann, a consultant to the ENIAC project, began work on a new machine before ENIAC was finished. The main contribution of EDVAC, their new project, was the notion of a stored program. There is some controversy over who deserves the credit for this idea, but none over how important the idea was to the future of general purpose computers. ENIAC was controlled by a set of external switches and dials; to change the program required physically altering the settings on these controls. These controls also limited the speed of the internal electronic operations. Through the use of a memory that was large enough to hold both instructions and data, and using the program stored in memory to control the order of arithmetic operations, EDVAC was able to run orders of magnitude faster than ENIAC. By storing instructions in the same medium as data, designers could concentrate on improving the internal structure of the machine without worrying about matching it to the speed of an external control.
 

Regardless of who deserves the credit for the stored program idea, the EDVAC project is significant as an example of the power of interdisciplinary projects that characterize modern computational science. By recognizing that functions, in the form of a sequence of instructions for a computer, can be encoded as numbers, the EDVAC group knew the instructions could be stored in the computer's memory along with numerical data. The notion of using numbers to represent functions was a key step used by Goedel in his incompleteness theorem in 1937, work which von Neumann, as a logician, was quite familiar with. Von Neumann's background in logic, combined with Eckert and Mauchly's electrical engineering skills, formed a very powerful interdisciplinary team.
 
Software technology during this period was very primitive. The first programs were written out in machine code, i.e. programmers directly wrote down the numbers that corresponded to the instructions they wanted to store in memory. By the 1950s programmers were using a symbolic notation, known as assembly language, then hand-translating the symbolic notation into machine code. Later programs known as assemblers performed the translation task.
 
As primitive as they were, these first electronic machines were quite useful in applied science and engineering. Atanasoff estimated that it would take eight hours to solve a set of equations with eight unknowns using a Marchant calculator, and 381 hours to solve 29 equations for 29 unknowns. The Atanasoff-Berry computer was able to complete the task in under an hour. The first problem run on the ENIAC, a numerical simulation used in the design of the hydrogen bomb, required 20 seconds, as opposed to forty hours using mechanical calculators. Eckert and Mauchly later developed what was arguably the first commercially successful computer, the UNIVAC; in 1952, 45 minutes after the polls closed and with 7% of the vote counted, UNIVAC predicted Eisenhower would defeat Stevenson with 438 electoral votes (he ended up with 442).

The Mechanical Era (1623-1945)

 The Mechanical Era (1623-1945)

The idea of using machines to solve mathematical problems can be traced at least as far as the early 17th century. Mathematicians who designed and implemented calculators that were capable of addition, subtraction, multiplication, and division included Wilhelm Schick hard, Blaise Pascal, and Gottfried Leibnitz.
 
The first multi-purpose, i.e. programmable, computing device was probably Charles Babbage's Difference Engine, which was begun in 1823 but never completed. A more ambitious machine was the Analytical Engine. It was designed in 1842, but unfortunately it also was only partially completed by Babbage. Babbage was truly a man ahead of his time: many historians think the major reason he was unable to complete these projects was the fact that the technology of the day was not reliable enough. In spite of never building a complete working machine, Babbage and his colleagues, most notably Ada, Countess of Lovelace, recognized several important programming techniques, including conditional branches, iterative loops and index variables.
 
A machine inspired by Babbage's design was arguably the first to be used in computational science. George Scheutz read of the difference engine in 1833, and along with his son Edvard Scheutz began work on a smaller version. By 1853 they had constructed a machine that could process 15-digit numbers and calculate fourth-order differences. Their machine won a gold medal at the Exhibition of Paris in 1855, and later they sold it to the Dudley Observatory in Albany, New York, which used it to calculate the orbit of Mars. One of the first commercial uses of mechanical computers was by the US Census Bureau, which used punch-card equipment designed by Herman Hollerith to tabulate data for the 1890 census. In 1911 Hollerith's company merged with a competitor to found the corporation which in 1924 became International Business Machines.

History of Computer Technology

History of Computer Technology
A
 complete history of computing would include a multitude of diverse devices such as the ancient Chinese abacus, the Jacquard loom (1805) and Charles Babbage's ``analytical engine'' (1834). It would also include discussion of mechanical, analog and digital computing architectures. As late as the 1960s, mechanical devices, such as the Merchant calculator, still found widespread application in science and engineering. During the early days of electronic computing devices, there was much discussion about the relative merits of analog vs. digital computers. In fact, as late as the 1960s, analog computers were routinely used to solve systems of finite difference equations arising in oil reservoir modeling. In the end, digital computing devices proved to have the power, economics and scalability necessary to deal with large scale computations. Digital computers now dominate the computing world in all areas ranging from the hand calculator to the supercomputer and are pervasive throughout society. Therefore, this brief sketch of the development of scientific computing is limited to the area of digital, electronic computers. 
The evolution of digital computing is often divided into generations. Each generation is characterized by dramatic improvements over the previous generation in the technology used to build computers, the internal organization of computer systems, and programming languages. Although not usually associated with computer generations, there has been a steady improvement in algorithms, including algorithms used in computational science. The following history has been organized using these widely recognized generations as mileposts.